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Abstract

Molecularly imprinted polymers (MIPs) are polymers that can be tailored with affinity and selectivity for a molecule of interest. Offsetting
the low cost and ease of preparation of MIPs is the presence of binding sites that vary widely in affinity and selectivity. Presented is a
review of methods that take into account binding site heterogeneity when calculating the binding properties of MIPs. These include the
bi-Langmuir, Freundlich, and Langmuir–Freundlich binding models. These methods yield a measure of heterogeneity in the form of binding
site affinity distributions and the heterogeneity index. Recent developments have made these methods surprisingly easy to use while also
yielding more accurate measures of the binding properties of MIPs. These have allowed for easier comparison and optimization of MIPs.
Heterogeneous binding models have also led to a better understanding of the imprinting process and of the advantages and limitations of MIPs
in chromatographic and sensor applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Molecularly imprinted polymers (MIPs) are highly
cross-linked polymers that are formed in the presence of a
template molecule[1–3]. Removal of the template leaves
binding cavities with affinity and selectivity for the orig-
inal template. The ease in preparation of these synthetic
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polymeric receptors is offset by the low fidelity of the im-
printing process. MIPs typically contain binding sites that
possess a wide range of affinities and selectivities. This
binding site heterogeneity strongly influences the binding
properties of MIPs. For example, heterogeneity has been
cited as a major source of peak broadening and asymmetry
in HPLC applications using MIP stationary phases[4]. It has
also been cited as a contributor to the low selectivities seen
when using MIPs as catalysts as enzyme analogs[5]. Bind-
ing site heterogeneity also severely complicates the mea-
surement of the binding properties of MIPs because it leads
to binding properties that are highly dependent on the con-
centration range in which they were measured. Despite the
consequence of heterogeneity in MIPs, only recently have
binding models been applied that take into account the full
breath of the heterogeneity in MIPs. The goal of this review
will be to introduce some of these methods and to discuss
their advantages and disadvantages in characterizing MIPs.

2. Homogeneity and heterogeneity

Surfaces with recognition abilities can be divided into
two general categories:homogeneousand heterogeneous.
These are shown schematically inFig. 1. In homogeneous
system, all the binding sites have the same affinity and
selectivity as depicted by the identical depths and shapes
of the binding cavities. In contrast, heterogeneous system
contain binding sites of varying affinity and selectivity as
denoted by the varying depths and shapes. Binding site het-
erogeneity in MIPs has often been compared to polyclonal
antibodies. A key difference, however, is that the individual
antibodies in a polyclonal mixture can be separated to yield
homogeneous monoclonal systems. The analogous purifi-
cation strategy cannot be applied to MIPs as all the binding
sites are physically bound together in the polymer matrix.

Various methods have been applied to reduce the hetero-
geneity in MIPs such as the optimization of the imprinting
process or selective chemical modification of the surface
[3]. The most successful has been to use stoichiometric
or covalent imprinting mechanisms[6]. This reduces the
structural and statistical variability of the key prepolymer-
ization complex. However, despite the rapid improvement
of MIPs, binding site heterogeneity remains as an almost
inherent property of MIPs. This is particularly true for the
non-covalently imprinted polymers, which remain the most
common class of MIPs because of their ease of preparation
from commercially available monomers.

Homogeneous Heterogeneous

Fig. 1. Schematic illustration of binding site homogeneity and hetero-
geneity in MIPs.

Fig. 2. The measured concentration dependence of the separation factor (α)
as measured for an MIP imprinted forl-phenylalanine anilide (l-PAA).
The separation factor was measured in batch rebinding studies and was
calculated as:α = ([bound l-PAA]/[free l-PAA])/([bound d-PAA]/[free
d-PAA]) [31].

2.1. Influence of heterogeneity

It should be pointed out that heterogeneity is not always
detrimental to the binding properties and applicability of
MIPs. In spite of their heterogeneity, non-covalent MIPs
have been and will continue to be utilized in a wide range of
applications including separations, sensing, and catalysis.
In addition, it will be argued later that heterogeneity is a
fundamental feature of the imprinting process. Heterogene-
ity, however, does usually temper and limit the capacity
and selectivity of MIPs. Perhaps more problematic is that
binding site heterogeneity severely complicates the char-
acterization of MIPs. It makes the binding properties of
MIPs highly concentration dependent, which obfuscates the
comparison and optimization of MIPs. A striking example
is the effect of heterogeneity on the chromatographic sep-
aration factor (α), which is a widely used figure of merit in
comparing MIPs. At high analyte concentrations,α is a rel-
atively stable but low value (Fig. 2). In contrast,α increases
rapidly to very high values at low analyte concentrations.
This behavior arises from the low affinity, low selectivity
site being sampled at high polymer loadings, and the high
affinity, high selectivity sites being sampled at low polymer
loadings. This concentration dependence ofα can yield
very high separations factors but also complicates the com-
parison of MIPs usingα. This highlights the importance of
understanding the underlying assumptions behind the dif-
ferent binding parameters that are used to compare MIPs. It
also demonstrates the need for methods for characterizing
MIPs that take into account heterogeneity in MIPs.

2.2. Shape of the distribution in MIPs

Once it was been established that MIPs contained a
heterogeneous distribution of binding sites, the question
then arose: what is the shape of the distribution? We have
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Fig. 3. The broad unimodal heterogeneous affinity distribution proposed
to be present in molecularly imprinted polymers.

proposed that a broad unimodal distribution is most con-
sistent with the observed binding properties and with the
many sources of heterogeneity in MIPs (Fig. 3) [7,8]. These
distributions are commonly represented as affinity distribu-
tions (AD), which plots the number of sites (N) that have
association constant (K). The x-axis is commonly plotted
in units of logK in order to make it proportional to the
binding energy (�G), and therefore this plot is also called
a site–energy distribution. This distribution is remarkably
similar in shape to that originally estimated by Wulff et al.
over 20 years earlier for the first imprinted polymers[9].

Initially, two distinct ADs were measured for MIPs: an
unimodal peak and an exponentially tailing distribution[7].
Later, these were proposed to be features of the same broad
unimodal distribution[8]. These distinct regions of the AD
of MIPs arise from measuring different portions of the
experimental binding isotherm. The exponentially tailing
portion corresponds to the lower concentration portion of
the binding isotherm where the high affinity binding sites
are preferentially sampled. In this region, the MIP is at low
loadings and is far from saturation. For most non-covalent
MIPs, this is typically the subset of sites that are mea-
sured and utilized in most applications. This is because it
is very difficult to reach saturation in most non-covalently
imprinted polymers due to their heterogeneity. The less
common region of the AD to sample is the unimodal peak
with a maximum atK0. These binding sites represent those
measured at high loadings as the polymer reaches satura-
tion. These have been measured in MIPs having very high
affinity or MIPs containing a more homogeneous and nar-
row distribution such as the stoichiometrically imprinted
polymers. However, with improvements in MIPs this region
of the AD will become increasing more important.

This broad heterogeneous distribution helps to explain
some of the unusual features of MIPs. For example, an ex-
traordinarily wide range of binding constants (K) have been
reported for MIPs from 10−2 to 10−8 M−1 [10]. A heteroge-
neous model proposes that MIPs effectively contain binding

sites that span this entire region from low to high affinity.
Thus, a subset of binding sites of can be found having just
about anyK, depending upon the concentration range being
measured. A closer examination of the literature reveals
that this is the case. For example, a binding study using UV
spectroscopy which covered a concentration range from
10−3 to 10−6 M, measured binding sites with association
constants from 104 to 105 M−1 [11]. Another binding study
using radio-ligand assays were able to measure even lower
concentrations of 10−8 M and identified binding sites with
even higher binding affinities of 107 M−1 [12]. Therefore,
the question in assessing MIPs should not be “are there
sites with a certain binding affinity?” but rather “how many
sites in the MIP have that binding affinity?”.

3. Characterization of heterogeneity

Reviewed, in this section, will be methods for char-
acterizing the binding properties of MIPs with particular
emphasis on those that can take into account and measure
heterogeneity. All the methods outlined further rely on cal-
culations based on the experimental binding isotherm. A
binding isotherm measures binding efficiency of a polymer
over a range of analyte concentrations and is usually plotted
as the concentration of analyte bound to a polymer (B) ver-
sus the concentration of free analyte remaining in solution
(F). Binding isotherms for MIPs can be obtained from batch
rebinding studies[11,13,14] in which a constant weight
of polymer is equilibrated with a known concentration of
analyte. This is then measured over a range of analyte con-
centrations. The concentration of the analyte remaining free
in solution (F) is measured by HPLC, UV–fluorescence
spectroscopy, or radio-ligand assay. The corresponding
concentration of bound analyte (B) is calculated as the
difference between the total (T) and free concentrations
(B = T − F ). Conversely, the concentration of analyte can
be held constant and the weight of polymer varied. Binding
isotherms can also be measured using frontal chromatog-
raphy studies[15–17]. Binding isotherms measured by
batch rebinding studies and chromatography may differ as
the chromatographically measured isotherms also contains
kinetic components, corresponding to rates of adsorption
and release. The chromatographically measured binding
isotherms are also measured under conditions where there
are much weaker interactions between analyte and MIP in
order to allow for elution. Thus, the measured capacities and
affinities tend to be much lower, and the overall shape and
ordering of isotherms measured by each method appear to
be very similar and have lead to very similar conclusions as
to which parameters are important in the imprinting process.

The relative binding ability of two polymers can be as-
sessed by overlaying their respective isotherms. A more
quantitative analysis can be made by comparison of the
binding parameters that can be calculated from the respec-
tive isotherms such as the number of binding sites (N) and
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association constant (K). The calculation of binding param-
eters from an isotherm requires the application of a spe-
cific binding model. Among those that have been applied
to MIPs are the Langmuir, bi-Langmuir, Freundlich, Toth,
and Langmuir–Freundlich isotherms[8,12,18,19]. Each of
these models specifies a certain mathematical relationship
between the bound (B) and free (F) concentrations in the
binding isotherm. In addition, each model makes certain as-
sumptions regarding the distribution of binding sites.

Selection of a binding model is primarily based on its
ability to accurately reproduce the experimental isotherm.
The physical basis for the model should also reflect the dis-
tribution of sites found in the measured system in order to
generate realistic binding parameters. Due to the complexi-
ties in calculating the distribution of sites in heterogeneous
systems, various simplifications and approximations meth-
ods are utilized. The most common is to assume that the
distribution of sites conforms to a certain general shape. A
few of the more common that have been applied to MIPs
are shown inFig. 4. Each can approximate the actual distri-
bution with increasing degrees of accuracy.

Binding models can be grouped into two general classes:
discrete and continuous distribution models. The most
commonly applied binding models, the Langmuir and
bi-Langmuir isotherms, are both examples of discrete bind-
ing models. Discrete binding models simplify a distribution
into a finite number of different classes of sites, with each
class of site having a different binding affinity. The Lang-
muir model assumes there is only a single class of sites, and
the bi-Langmuir assumes there are only two classes of sites.
The Freundlich and Langmuir–Freundlich are both exam-
ples of continuous distribution models in which a continu-
ous function containing an infinite number of different types
of binding sites is used to model the distribution. These
models provide increasingly more accurate approximations

Fig. 4. Discrete (a and b) and continuous (c and d) binding models
distributions, shown as bars and solid lines, respectively, which are overlaid
on the broad heterogeneous distribution that is proposed for MIPs (broken
lines). (a) Langmuir (narrow unimodal); (b) bi-Langmuir (bimodal); (c)
Freundlich (exponential); (d) Langmuir–Freundlich (broad unimodal).

for the heterogeneity present in most MIPs and also pro-
vide quantitative measures of heterogeneity. Both classes of
binding models with examined separately in the following
sections.

3.1. Discrete binding models

The discrete Langmuir and bi-Langmuir models are at-
tractive because they are particularly easy to implement via
Scatchard plots and readily generate the corresponding bind-
ing parameters: binding affinity (K) and number of bind-
ing sites (N). In the Scatchard analysis, the experimental
binding isotherm is replotted inB/F versusB format. In
homogeneous systems that contain only one type of bind-
ing site, the Scatchard plot falls on straight line (Eq. (1))
with a slope equal to the negative of the binding affinity
(−K) and anx-intercept equal to the number of binding
sites (N):

B

F
= KN − KB (1)

In contrast, the Scatchard plots for most MIPs are curved
(Fig. 5). This curvature has been cited as evidence for
binding site heterogeneity[14]. Heterogeneity can still be
accommodated using the Scatchard analysis by modeling
the curved isotherm as two separate straight lines, which is
a graphical method for applying the bi-Langmuir isotherm.
This limiting slopes method yields two separate sets of
binding parameters (K1, N1 andK2, N2) for two classes of
sites. The steeper line measures the high-affinity sites and
the flatter line measures the low-affinity sites.

The graphical application of the bi-Langmuir model us-
ing the limiting slopes method is inconsistent as it depends
upon individual decisions of which points to include in
which subset. The bi-Langmuir isotherm can also be ap-
plied in a more systematic manner using curve fitting using
the following expression (Eq. (2)). Higher order fits tri- and
tetra-Langmuir models can, likewise be applied by adding

Fig. 5. Scatchard plot for an ethyl adenine-9-acetate imprinted polymer,
with the limiting slopes estimated via regression.
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additional terms toEq. (2) [12]:

B = N1K1F

1 + K1F
+ N2K2F

1 + K2F
(2)

The bi-Langmuir binding model for curved Scatchard
plots, however, are based on a series of approximations. Ac-
curate estimates of the binding parameters using this method
can only be found under the conditions whenK2N2 �
K1N1 [20].

The Langmuir and bi-Langmuir models are based on
the assumption that MIPs are relatively homogeneous and
contain only one or two distinct classes of binding sites.
Measurement of the distributions in MIPs, on the other
hand, have revealed a broad heterogeneous distribution
[7]. This discrepancy between model and system leads to
inconsistencies in the calculated binding parameters. For
example, Scatchard plots yield highly concentration depen-
dent binding parameters (N andK) for non-covalent MIPs,
which, in theory, should be constants[7]. This variability in
the calculated binding parameters for a single MIP becomes
amplified when trying to compare two different polymers,
often leading to ambiguous conclusions.

3.2. Continuous distribution models

Due to the shortcomings of discrete binding model in char-
acterizing the heterogeneity, continuous distribution models,
such as the Freundlich and Langmuir–Freundlich, have been
more recently applied to MIPs[8,17]. These continuous dis-
tribution models are attractive as they can, in theory, more
accurately approximate the broad unimodal distribution in
MIPs. They should also yield more appropriate binding pa-
rameters. A second advantage is that the corresponding dis-
tribution and heterogeneity can be quantitatively measured.

3.3. Freundlich isotherm

The most easily applied continuous distribution model is
the Freundlich isotherm (FI). This model is based on the Fre-
undlich isotherm (Eq. (3)), which assumes a power function
relationship betweenB andF. There are two fitting param-
etersa andm that both yield a measure of physical binding
parameters. The preexponential factora is a measure of
the capacity (NT) and average affinity (K0). However, the
individual contributions ofNT andK0 to the preexponential
factor cannot be directly extracted without additional ex-
periments or assumptions. Therefore, this Freundlich fitting
parameter is of lesser value. The second fitting parameterm
is also known as the heterogeneity index. The value of which
varies from zero to one, with one being homogeneous and
values approaching zero being increasingly heterogeneous:

B = aFm (3)

The Freundlich model is most easily applied by replot-
ting the experimental binding isotherm in logB versus logF
format. In this form, systems that fit to the FI will fall on a

straight line, having a slope ofm and ay-intercept of loga
(Eq. (4)). The Freundlich model has been shown to be gen-
erally applicable to most non-covalently imprinted polymers
[19]. A literature survey of non-covalent MIPs, with widely
varying templates, polymerization conditions, and binding
affinities, found that 11 of 12 were in excellent agreement
with the FI (R2 > 0.95). Guiochon and co-workers[17] and
Hwang and Lee[21] have also demonstrated the ability of
the FI to accurately model the isotherms of MIPs:

logB = m logF + loga (4)

The ability to model the binding isotherm as a linear
function has a number of practical advantages. First, it re-
quires fewer experimental data points to accurately define
than a curved function. Secondly, deviations from linearity
in systems that follow the FI can be used as a diagnostic
in identifying sources of error in the binding isotherm. Dis-
continuities of the experimental isotherm are diagnostic of
systematic errors, whereas scatter of the data points from
linearity is characteristic of random error. A third advantage
of fitting the binding isotherm to specific function is that it
simplifies the estimation of the corresponding AD. Systems
that can be modeled by the FI are generally accepted to con-
tain an exponentially decaying distribution of binding sites
with respect to logK [22,23]. However, the FI by itself does
not provide sufficient information for the exact solution of
its AD. This calculation requires an accurate measure of
the total number of binding sites (NT) which is not possible
for systems that strictly follow the FI[22,23]. Due to the
prevalence of the FI, various approximations methods for
estimating the exponentially decaying distribution of the FI
have been developed. Most of these require additional phys-
ical measurements of the systems. Recently, Guiochon and
co-workers have developed an analytically derived expres-
sion for the AD for a FI which requires only the experimen-
tally derived Freundlich fitting parameters,a andm(Eq. (5)):

N(K) = a
sin(πm)

π
K−m (5)

N(K) = 2.303am(1 − m2)K−m

= 2.303am(1 − m2)e−2.303m logK (6)

We have separately developed a similar expression for the
AD of the FI (Eq. (6)).1 The differences in these expres-
sions (Eqs. (5) and (6)) arise because neither is an exact
solution, rather both are approximations of the actual ex-
ponentially decaying FI distribution.Eqs. (5) and (6)have
the same general form, with an identical decay factor of
−m. The differences in the preexponential coefficient rep-
resent differences in approximation methods used in their
derivations.

1 The new AD function for the FI was derived by inserting the FI
into the affinity spectrum approximation method for calculating affinity
distributions. The equation was simplified by taking the limit as the
1/stepsize approaches unity. This was accomplished using the software
package Mathcad, which automates symbolic limit taking.
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Fig. 6. Affinity distributions based on the Freundlich model plotted in
semi-log (left) and log (right) formats.

The FI AD expressions make use of the FI for character-
izing MIPs simpler than the more common limiting slopes
Scatchard method. Both, however, are simple algebraic func-
tions that can calculate the AD for a FI from the experimen-
tally derived FI fitting parameters (a andm). This enables the
comparison of MIPs via their ADs, which better takes into
account the heterogeneity in MIPs. First, the experimental
binding isotherm is measured and is plotted in logB versus
logF format. The slope and the 10(y-intercept) of the linear
fit of the isotherm yields the FI fitting parametersm anda.
These are used to calculate a distribution exponentially de-
caying distribution usingEq. (6). While the AD expression
(Eq. (6)), in theory allows the calculation of the AD over
any range of binding affinities. It is in practice only valid
within the limits (Kmin andKmax) set by the concentration
ranges of the experimental binding isotherm:

Kmax = 1

Fmin
and Kmin = 1

Fmax
(7)

ADs calculated using the FI can be presented in two
formats (Fig. 6). The first is the common semi-log format
(N versus logK), which shows the exponentially decaying
distribution. Thex-axis is in units of logK, which is pro-
portional to the binding energy�G. Therefore, this plot is
also called a site–energy distribution. The area under this
curve is equal to the number of binding sites having binding
affinities between the two limits. The second format for AD
is in log format (logN versus logK). This is useful because
in this plot the exponentially decaying distribution becomes
a straight line, which greatly facilitates the visual compar-
ison of the AD of different polymers. ADs with similar
heterogeneity are easily identified as parallel lines because
the slope in the format is equal to the heterogeneity indexm.

An important practical consideration in applyingEq. (6)
is choosing the appropriate units throughout. The units
of the binding isotherm ultimately determine the units of
the AD and all other calculated binding parameters. In
our studies, the binding isotherm (logB versus logF) is in
units of �mol g−1 versus mol l−1. This yields fitting pa-
rameters ofm which is unitless anda, which has units of
�mol g−1 (mol l−1)−m . Note thatm will be unitless regard-
less of the units of the binding isotherm and thata has units
that contain the first FI fitting parameterm. The calculated

AD then hasN in units of �mol g−1 and K in units of
l mol−1.

Expressions for two additional binding parameters can be
derived fromEq. (5). These are the number of sites,NK1−K2,
and the weighted average affinity,̄KK1−K2 (Eqs. (8)
and (9)).2 As the subscripts onNK1−K2 andK̄K1−K2 imply,
these expressions yield values that represent only a subset of
the entire distribution fromK1 to K2. These limits are set by
the concentration range over which the experimental bind-
ing isotherm was measured (Fmin to Fmax). The binding pa-
rametersNK1−K2 andK̄K1−K2 can be measured for any set
for K1 of K2 values that are within the boundariesKmin and
Kmax as defined byEq. (7). Further in comparing binding
parametersNK1−K2 andK̄K1−K2, it is important to calculate
them over the same range of binding sites (K1 andK2):

NK1−K2 = a(1 − m2)(K−m
1 − K−m

2 ) (8)

K̄K1−K2 = m

m − 1

K1−m
1 − K1−m

2

K−m
1 − K−m

2

(9)

An important limitation of the FI is that it is only accurate
for a portion of the entire binding isotherm. Deviations at
high concentration from the FI are expected because the FI
is not able to model saturation behavior (Fig. 4). Deviations
from the FI are also expected at very low concentrations
where the binding isotherm approaches Henry’s law where
there is direct linear correlation betweenB and F [24].
Fortunately, the binding isotherms for most MIPs are con-
strained to the intermediate concentration range where the
FI is applicable. The saturation portion of the isotherm is
difficult to measure in MIPs because their low average bind-
ing affinities and binding site heterogeneity combine to keep
the saturation point above the commonly measured concen-
tration range (>mM). The low concentration extreme (<nM)
is likewise difficult to measure in MIPs due to interference
from the slow leaching of the template from the matrix.

3.4. Langmuir–Freundlich isotherm

The inability of the FI to model saturation behavior lim-
its the types of binding parameters that can be calculated
from it. Specifically, the FI cannot yield the global binding
parameters such as the total number of binding sites (NT)
or the overall average affinity constant (K0). Accurate mea-
sures of these values in heterogeneous systems as well as
the heterogeneity index requires hybrid models that can ac-
commodate both saturation and subsaturation regions of a
binding isotherm such as the Jovanovic–Freundlich[24] or
Langmuir–Freundlich[8]. We have explored the utility of
the Langmuir–Freundlich isotherm (LFI) in characterizing
MIPs. This binding model seems to be the most general as
it can model both saturation and subsaturation behavior.

2 Eq. (8) was derived by integratingEq. (6) with respect toK over
the limits K1 to K2. Eq. (9) was derived from the integral of the product
of K and N(K) (Eq. (6)) divided by Eq. (8).
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The LFI is applied by curve fitting the binding isotherm
to the LFI (Eq. (10)). There are three fitting parametersNT,
K0, andm for the LFI.NT andK0 are the global binding pa-
rameters, total number of binding sites and median binding
affinity, respectively. The fitting parameterm is identical to
the heterogeneity indexm from the FI. The difference be-
tween the LFI and FI are evident at higher concentrations
where the LF can model saturation behavior. However, at
lower subsaturation concentrations the binding models are
virtually identical. In fact, the LF isotherm reduces to the FI
at low concentrations:

B = NTKm
0 Fm

1 + Km
0 Fm

(10)

We have also derived an analogous AD expression for the
LFI (Eq. (11)). This more complex equation is still a simple
algebraic expression and therefore, can be applied in simi-
lar fashion to the AD expression for the FI (Eq. (6)). Using
the experimentally derived LFI fitting parameters, the cor-
responding distribution can easily be calculated. The limits
over which the calculated AD is valid are set by the con-
centration range of the experimental binding isotherm using
the same expressions used for the FI (Eq. (7)):

N(K) = 2.3NTmKm
0 K−m

× (1 + 2Km
0 K−m + K2m

0 K−2m + 4Km
0 K−mm2 − K2m

0 K−2mm2 − m2)

(1 + Km
0 K−m)4

(11)

In general, the LFI is more universally applicable in char-
acterizing MIPs because it can model saturation and subsatu-
ration behavior together or individually. However, the LFI is
usually not necessary. The binding isotherms for most MIPs
have been measured in the substaturation region where the
more easily applied FI is sufficient. The LFI is still equally
capable of characterizing these systems since the LFI re-
duces to the FI at lower concentrations. A simple test to see
if the LFI is necessary is to plot the binding isotherm in
logB versus logF format. Isotherms that are linear over the
entire concentration range are more easily characterized us-
ing the FI. Isotherms that are curved over the entire range
are probably more easily characterized by the Langmuir
isotherm. Only systems that show both the linear regions at
low concentrations and the curvature at high concentrations
would benefit from the LFI. An example of an experimental
isotherm, which has these attributes is shown inFig. 7.

4. Limitations of AD methods

Two factors limit the accuracy of the AD methods in
characterizing MIPs[25]. First are the practical limits in
experimentally measuring the binding isotherm. Both the
concentration range and the accuracy of the binding isotherm
are usually constrained by the analytical methods used to
measure analyte concentration. These in turn affect the ac-
curacy of the calculated AD. The second factor limiting the

Fig. 7. Experimental isotherm and LFI fit for an atrazine imprinted polymer
[32].

accuracy of AD methods is more fundamental in nature and
more vexing. The calculation of ADs from binding isotherms
is a complex and “ill posed” mathematical problem. Only
in the simplest homogeneous cases can the corresponding
binding parameters (K andN) be exactly calculated. Even for

an ideal heterogeneous binding isotherm, there are multiple
ADs that could accurately reproduce the binding isotherm.
The presence of experimental error and limitations in the
concentration window only further obfuscates this prob-
lem. Thus, methods for calculating ADs from the binding
isotherm of heterogeneous systems are all approximations of
varying accuracy, and the selection of the appropriate bind-
ing model and AD are somewhat of a subjective exercise.

This inability to calculate the exact AD has contributed
to the uncertainty in even assigning the general shape of
the AD in MIPs. Our studies have suggested that MIPs
contain a broad continuous unimodal distribution; whereas
Guiochon and co-workers have recently suggested that a
bimodal model may be more appropriate[26]. Based on
the uncertainty in measuring binding isotherms and in
calculating ADs, both binding models are probably valid
mathematical solutions. Our choice of a continuous dis-
tribution over a discrete bimodal distribution is based on
three factors. First, we followed the principle of Occam’s
razor. The simplest model with the fewest fitting parameters
was chosen that accurately characterized MIPs. Both the
bi-Langmuir and the Langmuir–Freundlich isotherms can
accurately reproduce the experimental binding isotherm.
However, the Langmuir–Freundlich does so using fewer
fitting parameters, three versus four. Furthermore, compar-
ison of the residuals from the two models also favors the
Langmuir–Freundlich model as the experimental binding
isotherms for MIPs typically show systematic variations
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from bi-Langmuir isotherm. Second, if a bimodal distri-
bution were present then application of the bi-Langmuir
isotherm to different subsets of the same binding isotherm
should consistently yield the same two classes of binding
sites. However, this analysis yields a different set of as-
sociation constants each time, which are more dependent
on the concentration range being measured than the MIP
being tested. This variability of binding parameters for a
single polymer would seem to argue against a bimodal dis-
tribution and for a continuous heterogeneous distribution in
MIPs. Finally, it is tempting to believe that the imprinting
process will yield two distinct classes of sites: low affinity
(background sites) and the high affinity (imprinted sites).
However, given the many possible sources of heterogeneity
including variability in the stoichiometry of the prepolymer-
ization complexes, variability in the shape of the imprinted
cavity [27], self-association of the template, and flexibility
of the polymer matrix, it seems unlikely that a discrete
bimodal distribution would form. More likely, the imprint-
ing process yields a diversity of sites that is effectively a
continuous distribution.

5. Advantages of AD methods

Due to the mathematical complexities, many of the meth-
ods for calculating ADs are computationally intensive and
difficult to apply for the average user[26,28–30]. This is
certainly the case for the initial methods such as the affin-
ity spectrum and the expectation-maximization methods that
were applied to MIPs. These methods were chosen for their
ability to calculate ADs of varying shapes; however, this flex-
ibility comes at the cost of computational complexity. Once
the general shape of AD of MIPs has been specified, then
regularized heterogeneous binding models such as the FI and
LFI can be applied. These models significantly simplify the
process and the corresponding ADs can be estimated using
simple analytical expressions such asEqs. (5), (6) and (11).

The advantage of using AD methods to characterize MIPs
is that they take into account the heterogeneity in MIPs and
therefore yield a more accurate description of their binding
properties. This has the practical benefit of allowing for more
accurate comparison and optimization of MIPs. The ADs ex-
press the concentration dependence of the binding properties
as a graphical function. For example, differences in capacity
and concentration window can shift the boundaries of the
ADs (Kmin andKmax), but will not change the general shape
of the distribution. Therefore, ADs of two polymers can be
compared for overlapping regions. In contrast, the binding
parameters (N andK) calculated using Scatchard plots will
vary widely with the concentration windows in which they
were measured, leading to inconsistencies and ambiguities
in comparing to evaluating the corresponding MIPs.

The LFI and FI also yield a quantitative measure of het-
erogeneity in the form of the heterogeneity indexm. The
ability to measure heterogeneity is important because het-

Fig. 8. Representative affinity distributions showing the greater hetero-
geneity of imprinted polymers (solid line) over non-imprinted polymers
(broken line).

erogeneity strongly influences the binding properties and
utility of MIPs. For example, heterogeneity is a major con-
tributor to the peak asymmetry and tailing that inhibits the
broader utility of MIPs in chromatographic applications[4].
It has also been cited as a source of the poor selectivity and
cross-reactivity of MIPs in sensing and catalytic applications
[5,12]. Thus, the ability to accurately measure heterogene-
ity in the form of the heterogeneity index is an essential tool
for trying to reduce heterogeneity in MIPs.

The application AD methods to MIPs have yielded a bet-
ter understanding of the imprinting process and the imprint-
ing effect. Perhaps the most surprising observation was that
imprinted polymers are consistently more heterogeneous
than their control non-imprinted polymers. This would seem
counterintuitive as the formation of binding sites in the im-
printing process would seem to go hand in hand with increas-
ing homogeneity. This observation has changed our percep-
tions of the origins of the imprinting effect. The imprinted
and non-imprinted polymers have very similar shaped broad
unimodal distributions ADs. The primary difference appears
to be that the imprinted polymer has a broader more hetero-
geneous distribution (Fig. 8). It is actually the greater het-
erogeneity of MIPs that shifts their distributions out into the
high affinity region. For most applications, the MIPs are only
tested in the exponentially decaying portion of the AD where
MIPs shows higher capacity then non-imprinted polymers.

The above model suggests that heterogeneity is not only
an intrinsic property of imprinted polymers but is character-
istic of the imprinting effect. We propose that heterogeneity
is actually a better figure of merit in comparing MIPs. The
validity of using the heterogeneity index to compare MIPs
was tested by optimizing the imprint effect by changing vari-
ables in the imprinting process. Consistent with previous
studies: higher concentrations of template, lower tempera-
tures and higher cross-linking percentages all improved the
imprint effect as measured by increased capacity, affinity and
also heterogeneity. In each case, the optimized polymer was
more heterogeneous as measured by a lower heterogeneity
index (m). The heterogeneity index has the advantage that it
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remains constant for a particular polymer regardless of the
concentration window in which it was measured. In contrast,
previous figures of merits for MIPs such as binding affinity
(K), capacity (N) or even selectivity (α) are all highly con-
centration dependent, which complicates their use in com-
paring MIPs.

6. Conclusions

Previous methods for characterizing MIPs have not di-
rectly addressed the issue of binding site heterogeneity de-
spite the acknowledged importance of heterogeneity to the
binding properties and utility of MIPs. Most likely, this has
been due to the difficulties in applying heterogeneous mod-
els. However, recent developments have significantly sim-
plified the use of continuous heterogeneous binding models
such as the Freundlich and Langmuir–Freundlich isotherm
in characterizing MIPs and also in the calculation of the
corresponding binding parameters and affinity distributions.
In addition to allowing for characterization of heterogene-
ity and for the more accurate measure of the binding prop-
erties in MIPs, the AD based methods also of value in the
fundamental characterization of the imprinting process. Our
studies have suggested that MIPs contain a broad unimodal
distribution that exponentially tails into the high affinity re-
gion. This exponentially decaying region appears to be the
most important with respect to the enhanced affinity and se-
lectivity of MIPs.
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